Connect with us

science

New Flexible Wearable Device Can Analyse Health Data by Mimicking Human Brain

Published

on

Fusing wearable technology with artificial intelligence, researchers, at the University of Chicago, have developed a flexible stretchy device that records heath data and processes by mimicking the functioning of a human brain. Today, a range of wearable fitness bands and other health devices exist in the market. However, most of them are not capable of undertaking complex analysis of the patient’s baseline measurements and spot signals of disease.

This is where the potential of artificial intelligence can be used to bridge the gap. Machine learning can help detect patterns in sophisticated data sets. However, sending the information from a device to a centralised AI location is not efficient enough and energy intensive.

Hence, in the new study, the team aimed at designing a chip that could not only collect data from multiple biosensors but also draw conclusions about the person’s health using AI. “With a smartwatch, there’s always a gap. We wanted something that can achieve very intimate contact and accommodate the movement of skin,” said Sihong Wang, a materials scientist and Assistant Professor of Molecular Engineering. Wang is also one of the authors of the study published in Matter.

Advertisement

The team has decided to utilise polymers that can be used to make semiconductors and electrochemical transistors and are also quite flexible and stretchy. They have accommodated the polymers into a device that enabled the processing of the data through AI. The chip, named neuromorphic computing, works less like a computer and more like a human brain. This way it is able to both store and analyse information in an integrated way.

Researchers have also tested the efficiency of the device and used it to analyse electrocardiogram (ECG) data or the electrical activity of the heart. They trained the device to classify the data into four types and found that it provided an accurate analysis of whether the chip was bent or not.

Source link

science

Mathematical Model to Determine if Astronauts Can Safely Land on Mars Developed by Researchers

Published

on

After conducting successful Mars missions and sending rovers to explore the Red Planet, scientists are investigating the possibility of a human landing on Mars. A team of space medicine experts has proposed a mathematical model that could be used to predict if an astronaut can safely reach Mars and carry out missions after stepping on the planet’s surface. The experts tried to examine if the human body can tolerate the gravitational force of Mars without fainting or experiencing a medical emergency. They have simulated the impact of prolonged exposure to zero gravity on the cardiovascular system through the model.

According to experts at The Australian National University (ANU), the mathematical model could come in handy while determining the impact of short and long flights to Mars on the bodies of astronauts in future human missions to the Red Planet.

As Mars has weaker gravity than Earth, experts believe that continuous exposure to microgravity or near zero gravity can take a toll on the bodies of astronauts. According to Dr Lex van Loon, a Research Fellow from the ANU Medical School, exposure to zero gravity combined with damaging radiation from the sun poses the biggest risk to space travellers on the journey to Mars.

Advertisement

“We know it takes about six to seven months to travel to Mars and this could cause the structure of your blood vessels or the strength of your heart to change due to the weightlessness experienced as a result of zero gravity space travel,” explained Dr van Loon. He is also the lead author of the paper published in npj Microgravity

The researcher added that the mathematical model can be used to assess if people are fit to be sent to Mars. The model uses an algorithm that is based on astronaut data collected from past space missions.

Describing the effects of zero gravity on our bodies, astrophysicist and emergency medicine registrar Dr Emma Tucker said that the fluid in our body shifts to the top half due to lack of gravity in space. This, according to her, prompts the body to think that there is too much fluid in the system. “As a result, you start going to the toilet a lot, you start getting rid of extra fluid, you don’t feel thirsty and you don’t drink as much, which means you become dehydrated in space,” Tucker added.

Hence, the new model can help determine if astronauts can safely reach the Red Planet and perform the duties they are sent for.


Do the Galaxy Z Fold 4 and Z Flip 4 offer enough over last year’s models? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Source link

Advertisement
Continue Reading

science

New Phase of Matter Created in Quantum Computer, Could Act as Long-Term Quantum Information Storage

Published

on

Beaming a laser pulse sequence based on Fibonacci numbers at atoms inside a quantum computer, physicists have created a previosuly undetected phase of matter. What is fascinating about the phase is that it behaves as if it has two dimensions of time despite having a singular flow of time. The researchers used 10 atomic ions of an element called ytterbium, which are individually held and controlled by electric fields produced by an ion trap. These ions can be manipulated (or measured) using laser pulses. The scientists believe that this would help them in storing information in a more error-free manner. This is likely to pave way for the development of quantum computers that can hold information for a long time without distortion or loss of data.

The physicists behind the discovery did not aim their study at creating a phase with theoretical extra time. Instead, they were interested in making a new phase of matter besides the existing ones like liquid, solid, and gas.

The team set out to build a new phase in the quantum computer called the H1 quantum processor. It consists of 10 ytterbium ions that are precisely controlled by lasers inside a vacuum chamber. In the study, the team explored a special set of phases called topological phases. While moving from one phase to another, the breaking of the physical symmetries appears as the key hallmark. Even creating a new topological phase inside a quantum computer relies on symmetry breaking. However, in the new phase matter, the symmetry was observed to be breaking across time rather than space.

Advertisement

In conducting the experiment, researchers used the Fibonacci sequence in which the next number in the sequence is created by adding the previous two. The Fibonacci pulsing created a time symmetry that was ordered without ever repeating just like a quasicrystal in space.

“The system essentially gets a bonus symmetry from a nonexistent extra time dimension,” said researchers from the Center for Computational Quantum Physics at the Flatiron Institute in New York. The observations have been described in a paper published in Nature.

The team has observed that the new quasiperiodic Fibonacci pulse resulted in a topographic phase that prevented data loss from the system for the entire 5.5 seconds. This meant that they had drummed up a phase that was immune to decoherence for much longer.


Do the Galaxy Z Fold 4 and Z Flip 4 offer enough over last year’s models? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Source link

Continue Reading

science

NTPC Lowers Carbon Footprint; Plans Projects to Light Up 2 Lakh Households, Reduce CO2 Emissions

Published

on

NTPC Limited, India’s largest integrated energy company achieved 69454 MW of group installed and commercial capacity with the commissioning of 56 MW Kawas Solar PV Project at NTPC Kawas, Gujarat on Monday. The Ministry of Power in a statement said that NTPC is steadily lowering its carbon footprint by reducing greenhouse gas emissions through the installation of renewable energy projects in its existing stations as well as putting up green field RE projects.

The company has planned 262 MW floating solar on over 1300 acres of its reservoir area by installing over 9,50,000 PV modules at its various stations out of which 242 MW has been commissioned.

“This includes the country’s largest floating solar of 100 MW at Ramagundam in Telangana, 92 MW at Kayamkulam in Kerala, and 25 MW each at Simhadri, Andhra Pradesh, and Kawas in Gujarat,” the Ministry of Power said.

Advertisement

The ministry further said that these projects would light more than 2,00,000 households and would be instrumental in reducing over half a million tonnes of CO2 emissions on an annual basis. Besides these, the projects would entail a saving of 5 trillion litres of water per annum, sufficient to meet the yearly water requirements of 15,000 households.

NTPC has become the world’s first energy major to declare its Energy Compact goals. Recently it has collaborated with NITI Aayog to achieve ‘net zero’ targets. The NTPC Group plans to achieve 60 GW of renewable energy by 2032.

Presently, NTPC has 2.3 GW of commissioned renewable capacity with 3.9 GW under implementation and execution. NTPC also has 4.9 GW of renewable energy capacity under tendering process which will further bolster the green energy portfolio of India’s largest power producer.


Do the Galaxy Z Fold 4 and Z Flip 4 offer enough over last year’s models? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Source link

Continue Reading

Most Popular