Connect with us

science

Moon Richer in Water Than Once Thought, Studies Find

Published

on

Moon Richer in Water Than Once Thought, Studies Find

There may be far more water on the Moon than previously thought, according to two studies published Monday raising the tantalising prospect that astronauts on future space missions could find refreshment, and maybe even fuel, on the lunar surface. 

The Moon was believed to be bone dry until around a decade ago, when a series of findings suggested that our nearest celestial neighbour had traces of water ice in permanently-shadowed craters at its polar regions. 

Advertisement

Two new studies published in Nature Astronomy on Monday suggest water could be even more widespread, including the first confirmation that it is present even in easier-to-access sunlit areas.   

If this water could be extracted, it could give astronauts travelling to the Moon and beyond access to drinking water. They might even be able to split the molecules to make rocket fuel. 

That is of particular interest to NASA, which is planning a human mission to the Moon in 2024 and wants to build a sustainable presence there by the end of the decade to prepare for onward travel to Mars.

The new study was able to “unambiguously” distinguish the spectral fingerprint of molecular water in a sunlit area, said lead author Casey Honniball, of the Hawaii Institute of Geophysics and Planetology.

“If we find the water is abundant enough in certain locations we may be able to use it as a resource for human exploration,” Honniball, who is also a postdoctoral fellow at NASA’s Goddard Space Flight Center, told AFP. 

Previous research has found indications of water on the sunlit surface, but these were unable to distinguish between water (H2O) and hydroxyl, a molecule made up of one hydrogen atom and one oxygen atom that is a common drain cleaner on Earth.  

Using data from the Stratospheric Observatory for Infrared Astronomy (SOFIA) Airborne Telescope, researchers used a more precise wavelength than had been used before, 6 microns instead of 3.

Advertisement

They found a water concentration of about 100 to 400 parts per million at Clavius crater, one of the largest to be visible from Earth. 

“That’s roughly equivalent to a 12 ounce (350 millilitre) bottle of water within a cubic metre of volume of lunar soil,” Honniball said in a NASA press conference.

These are not “puddles of water”, she stressed, but scattered molecules that do not form ice or liquid water. 

Researchers believe they originate from solar winds or micro-meteorites and think they might either be trapped in beads of glass or within the grains of the lunar surface to protect them from the harsh atmosphere.  

‘Tiny shadows’

In the second study, researchers looked at the Moon’s polar regions, where water ice has been detected in lunar craters that never see sunlight.  

NASA in 2009 found water crystals in a deep crater near the Moon’s southern pole. 

Advertisement

But the new study found evidence of billions of micro-craters that could each cradle a miniscule amount of ice.

“If you were standing on the Moon near one of the poles, you would see a whole ‘galaxy’ of little shadows speckled across the surface,” said lead author Paul Hayne of the Department of Astrophysics at the University of Colorado.  

“Each of these tiny shadows, most of them smaller than a coin, would be extremely cold, and most of them cold enough to harbour ice.” 

This “suggests that water could be much more widespread on the Moon than previously thought”, Hayne said.

The authors say this could mean that approximately 40,000 km2 of the lunar surface has the capacity to trap water.

Advertisement

They were able to reconstruct the size and distribution of these little craters using high-resolution images and lunar temperature measurements taken from NASA’s Lunar Reconnaissance Orbiter.

The micro-craters should be as cold, around -160 degrees Celsius, as the larger, kilometre-scale lunar hollows, Hayne said, adding that there are “tens of billions” of them. 

Deep space exploration

Samples from these cold traps could tell us more about how the Moon, and even Earth, got its water, Hayne said, perhaps providing evidence of water delivered by asteroids, comets and the solar wind.  

Jacob Bleacher, chief exploration scientist for NASA’s Human Exploration and Operations Mission Directorate, said it was crucial to find out more about where the water came from and how accessible it is.

“Water is extremely critical for deep space exploration. It’s a resource of direct value for our astronauts,” he told reporters, adding it was heavy and therefore expensive to take from Earth. 

Advertisement

“Anytime we don’t need to pack water for our trip, we have an opportunity to take other useful items with us, for instance payloads to do more science.”


Are iPhone 12 mini, HomePod mini the Perfect Apple Devices for India? We discussed this on Orbital, our weekly technology podcast, which you can subscribe to via Apple Podcasts, Google Podcasts, or RSS, download the episode, or just hit the play button below.

Source link

Advertisement
Advertisement
Comments

science

"Mirror World" Behind One Of Space’s Mysteries: Study

Published

on

A mirror world is a common trope in fantasy and fiction, but it may also be the answer to one of Space’s biggest mysteries today. A group of scientists behind a new research paper suggest that a “mirror world” of particles that remains unseen from us may be the answer to the Hubble Constant problem. The Hubble constant problem refers to the discrepancy in the theoretical value of the rate of expansion in the universe and the actual rate of expansion as observed by measurements. The issue remains to reconcile the two without upending the entire cosmological model as it stands today. As doing so would ruin the agreements with the current scientific models and the observed phenomenon in Space like the cosmic microwave background.

“Basically, we point out that a lot of the observations we do in cosmology have an inherent symmetry under rescaling the universe as a whole. This might provide a way to understand why there appears to be a discrepancy between different measurements of the Universe’s expansion rate,” said lead researchers Francis-Yan Cyr-Racine from the University of New Mexico, and Fei Ge and Lloyd Knox at the University of California.

Their observations were published in the paper titled Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant, which was released recently in Physical Review Letters.

Advertisement

“The mirror world idea first arose in the 1990s but has not previously been recognised as a potential solution to the Hubble constant problem. This might seem crazy at face value, but such mirror worlds have a large physics literature in a completely different context since they can help solve an important problem in particle physics,” said Cyr-Racine. “Our work allows us to link, for the first time, this large literature to an important problem in cosmology.”

Apart from the mirror world idea, scientists have also considered the possibility of measurement errors to be behind the discrepancy. But as measurement tools have gotten better, the deviation between the theoretical and observed value has only increased, leading many to believe that measurement errors are not the reason behind the discrepancy.

Source link

Continue Reading

science

NASA Satellite Captures Unique View of Total Lunar Eclipse That Occurred on May 15

Published

on

A NASA satellite, named Lucy which was launched in October 2021, managed to capture a unique perspective on the total lunar eclipse, which occurred on May 15-16. The satellite was launched for a 12-year journey to probe eight different asteroids, including one asteroid from the main asteroid belt in the solar system. The other seven asteroids that the satellite will probe are from Jupiter’s trojans asteroid cluster.

The satellite was already at a distance of 64 million miles (100 million km) from the Earth, roughly 70 percent of the distance between the Earth and the Sun, when it observed the total lunar eclipse.

“While total lunar eclipses aren’t that rare – they happen every year or so – it isn’t that often that you get a chance to observe them from an entirely new angle,” said planetary scientist Hal Levison of the Southwest Research Institute (SwRI), who is the principal researcher of the mission in a statement.

Advertisement

“When the team realized Lucy had a chance to observe this lunar eclipse as a part of the instrument calibration process, everyone was incredibly excited,” Levison added.

“Capturing these images really was an amazing team effort. The instrument, guidance, navigation and science operations teams all had to work together to collect these data, getting the Earth and the Moon in the same frame,” said Acting Deputy Principal Investigator Dr. John Spencer, also from SwRI.

The satellite took 86 one-millisecond exposure shots in order to make a 2-second timelapse of the first half of the eclipse. The video was published by NASA on its website. People can see a cross-sectional view of the eclipse in the short but mesmerising video.

The video can be found on the following link.

Source link

Advertisement
Continue Reading

science

This Battery-Like Device Can Absorb Carbon Dioxide While Charging

Published

on

Researchers at the University of Cambridge have designed a battery-like device that can take us a step further to solve the carbon dioxide emission problems in the present world. This supercapacitor device can selectively absorb CO2 during its charging process. When the battery-like device discharges, it will release the carbon dioxide in a controlled manner in such a way that can be collected to reuse or dispose of it later.

According to an article by EurekAlert, almost 35 billion tonnes of carbon dioxide are released into the atmosphere every year. Hence, the world is in need of urgent solutions to eliminate these emissions to solve the climate change problems.

There have been efforts in this direction, to control, capture, reuse and eliminate carbon emissions from the atmosphere. But the most advanced technologies, in this field, use a lot of energy and are highly expensive. The supercapacitor at the University of Cambridge is designed to capture and store carbon using low-cost technology.

Advertisement

The supercapacitor is as small as a coin. It is partly made using sustainable materials like coconut shells and seawater. Grace Mapstone, the co-author of the study, said, “The best part is that the materials used to make supercapacitors are cheap and abundant. The electrodes are made of carbon, which comes from waste coconut shells.”

Dr Alexander Forse from Cambridge’s Yusuf Hamied Department of Chemistry led the research. He said, “We found that by slowly alternating the current between the plates we can capture double the amount of CO2 than before.” He added, “The charging-discharging process of our supercapacitor potentially uses less energy than the amine heating process used in industry now. Our next questions will involve investigating the precise mechanisms of CO2 capture and improving them. Then it will be a question of scaling up.”

The research, which has been published in the journal Nanoscale, describes the supercapacitor. It uses two electrodes of positive and negative charge. Unlike a rechargeable battery, it does not use chemical reactions to store energy. Instead, it stores energy by the movement of electrons between the electrode plates. This gives it a longer lifespan.

Grace Mapstone said, “We want to use materials that are inert, that don’t harm environments, and that we need to dispose of less frequently. For example, the CO2 dissolves into a water-based electrolyte which is basically seawater.”

Source link

Advertisement
Continue Reading

Most Popular