Connect with us

science

China Mars Probe Tianwen-1 Photographs Earth en Route to Red Planet

Published

on

China’s first Mars probe has beamed back a photo of the Earth and the Moon as it heads toward its destination, the country’s space agency said Tuesday.

The image, which shows the two celestial bodies as small crescents in the empty darkness of space, was taken 1.2 million kilometres (746,000 miles) away from Earth three days after the Tianwen-1 mission was launched on Thursday, the China National Space Administration said.

China joined the United States and United Arab Emirates this month in launching a mission to Mars, taking advantage of a period when Mars and Earth are favourably aligned.

Advertisement

The mission, given a name that means “Questions to Heaven,” aims to enter Martian orbit seven months after the launch and release a small rover to study the planet’s surface.

It’s the latest milestone in Beijing’s space programme, which has sent two rovers to the Moon and set up a satellite navigation, Beidou, to rival the United States’ GPS.

The National Space Administration on Tuesday said Tianwen-1, which has left Earth’s gravitational field, “is currently in good flight conditions, has balanced fuel and is operating normally.”

The rover had by Tuesday traveled least 1.5 million kilometres from Earth, the agency said — just a fraction of the 55 million kilometres it must traverse before it reaches Mars.

Source link

Advertisement

Advertisement
Comments

science

Elon Musk’s SpaceX Launched Falcon 9 With 46 Starlink Satellites to Low-Earth Orbit

Published

on

Billionaire tycoon Elon Musk-led SpaceX launched another batch of Starlink satellites into orbit on Friday.Taking to his official Twitter account, Musk, the founder of American spacecraft manufacturer, and satellite communications corporation SpaceX shared the details about the new satellite launch.

According to the SpaceX reports, Falcon 9 launched 46 Starlink satellites to low-Earth orbit from Space Launch Complex 4 East (SLC-4E) at Vandenberg Space Force Base, California.

Nine minutes after the launch, the rocket first landed over a drone ship in the Pacific Ocean and it was liftoff in a short time. The second stage was expected to deploy the satellites 63 minutes after launch after the livestream concluded.

Advertisement

The new satellites are part of Group 3, which orbits in a shell that might be prone to debris “squalls” from a Russian anti-satellite test that took place in November last year, according to SpaceNews report.

A space-tracking company COMSPOC recently revealed a conjunction squall event, in which the 841 Starlink satellites representing about 30 percent of the SpaceX constellation are affected by 6,000 close approaches.

A conjunction, by COMSPOC standards, is defined as two orbiting objects being within 6 miles (10 kilometres) of each other. SpaceX hasn’t commented on whether any Starlinks were affected, but in past discussions about space junk, the company has emphasized that its satellites can manoeuvre to dodge close-approaching spacecraft or debris.

COMSPOC stated in a report that, Group 3 of Starlink’s five layers spacecraft are in a similar orbit to other sun-synchronous satellites that have come close to the Russian ASAT debris before.

Group 3 is at an inclination of 97.6 degrees and at an altitude of 347 miles (560 kilometres), according to Teslarati.

SpaceX has already sent two other Group 3 collections into orbit, on July 10 and July 22, both from Vandenberg.

SpaceX’s 36th launch of 2022 added to its ever-growing record for launches in a year. The company also concluded its 62nd consecutive landing of a first stage, and a 34th reflight of a booster in 2022.

Advertisement

Friday’s flight was the 10th for this particular Falcon 9 first stage, according to reports, it was a SpaceX mission.


What should you make of Realme’s three new offerings? We discuss them on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Source link

Continue Reading

science

First Synthetic Embryos: the Scientific Breakthrough Raises Serious Ethical Questions

Published

on

Children, even some who are too young for school, know you can’t make a baby without sperm and an egg. But a team of researchers in Israel have called into question the basics of what we teach children about the birds and the bees, and created a mouse embryo using just stem cells. It lived for eight days, about half a mouse’s gestation period, inside a bioreactor in the lab.

In 2021 the research team used the same artificial womb to grow natural mouse embryos (fertilised from sperm and eggs), which lived for 11 days. The lab-created womb, or external uterus, was a breakthrough in itself as embryos could not survive in petri dishes.

If you’re picturing a kind of silicone womb, think again. The external uterus is a rotating device filled with glass bottles of nutrients. This movement simulates how blood and nutrients flow to the placenta. The device also replicates the atmospheric pressure of a mouse uterus.

Advertisement

Some of the cells were treated with chemicals, which switched on genetic programmes to develop into placenta or yolk sac. Others developed into organs and other tissues without intervention. While most of the stem cells failed, about 0.5% were very similar to a natural eight-day-old embryo with a beating heart, basic nervous system and a yolk-sac.

These new technologies raise several ethical and legal concerns.

Artificial wombs

In the latest study, scientists started with collections of stem cells. The conditions created by the external uterus triggered the developmental process that makes a fetus. Although the scientists said we are a long way off synthetic human embryos, the experiment brings us closer to a future where some humans gestate their babies artificially.

Each year over 300,000 women worldwide die in childbirth or as a result of pregnancy complications, many because they lack basic care. Even in wealthy countries, pregnancy and childbirth is risky and healthcare providers are criticised for failing mothers.

There is an urgent need to make healthcare more accessible across the planet, provide better mental health support for mothers and make pregnancy and childbirth safer. In an ideal world every parent should expect excellent care in all aspects of motherhood. This technology could help treat premature babies and give at least some women a different option: a choice of whether to carry their child or use an external uterus.

Some philosophers say there is a moral imperative to develop artificial wombs to help remedy the unfairness of parenting roles. But other researchers say artificial wombs would threaten a women’s legal right to terminate a pregnancy.

Advertisement

Synthetic embryos and organs

In the last few years, scientists have learned more about how to coax stem cells to develop into increasingly sophisticated structures, including ones that mimic the structure and function of human organs (organoids). Artificial human kidneys, brains, hearts and more have all been created in a lab, though they are still too rudimentary for medical use.

The issue of whether there are moral differences between using stem cells to produce models of human organs for research and using stem cells to create a synthetic embryo are already playing out in law courts.

One of the key differences between organoids and synthetic embryos is their potential. If a synthetic embryo can develop into a living creature, it should have more protection than those which don’t.

Synthetic embryos do not currently have potential to actually create a living mouse. If scientists did make human synthetic embryos, but without the potential to form a living being, they should arguably be treated similarly to organoids.

Advertisement

Some countries (for example Australia) have taken the position that synthetic embryos such as “blastoids” (which resemble five-to-six-day-old embryos) should be treated like natural embryos, because of similarities in structure. Other countries (such as the UK, the US, Japan) treat synthetic embryos as different from embryos because they can’t currently produce a live baby.

Another important legal issue is the source of stem cells and consent. The synthetic mouse embryo creators used stem cells from early embryos.

However, in the future it might be possible to make synthetic embryos from induced pluripotent stem cells (IPS). The worst case scenario would be a person donates a skin cell to research into producing organs to cure disease but this is used without their knowledge or consent to produce synthetic embryos.

Cloning

IPS cells are created by taking a mature cell (such as a skin cell) from a living or dead person and applying treatments which drive it backwards to a more immature state. If the cell could be driven all the way back to an embryonic stem cell, it may one day be possible to use IPS cells to make viable embryos.

Advertisement

That embryo would be a clone of the cell donor. The public and scientists have huge concerns about human cloning.

But it has been possible to clone a human being using a different process called nuclear transfer, for 25 years. Nuclear transfer created Dolly the Sheep in 1997 and a monkey in 2018. In the late 90s and early 2000s, a flurry of laws introduced around the world successfully banned human cloning.

We should not let our fears about cloning stand in the way of crucial research. The benefits could make organ donor waiting lists a thing of the past, save premature babies and give women an option to have children a different way. Cloning, or any other unethical use of the technology, can be prevented by regulation.


What should you make of Realme’s three new offerings? We discuss them on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Source link

Advertisement
Continue Reading

science

First Synthetic Embryos: the Scientific Breakthrough Raises Serious Ethical Questions

Published

on

Children, even some who are too young for school, know you can’t make a baby without sperm and an egg. But a team of researchers in Israel have called into question the basics of what we teach children about the birds and the bees, and created a mouse embryo using just stem cells. It lived for eight days, about half a mouse’s gestation period, inside a bioreactor in the lab.

In 2021 the research team used the same artificial womb to grow natural mouse embryos (fertilised from sperm and eggs), which lived for 11 days. The lab-created womb, or external uterus, was a breakthrough in itself as embryos could not survive in petri dishes.

If you’re picturing a kind of silicone womb, think again. The external uterus is a rotating device filled with glass bottles of nutrients. This movement simulates how blood and nutrients flow to the placenta. The device also replicates the atmospheric pressure of a mouse uterus.

Advertisement

Some of the cells were treated with chemicals, which switched on genetic programmes to develop into placenta or yolk sac. Others developed into organs and other tissues without intervention. While most of the stem cells failed, about 0.5% were very similar to a natural eight-day-old embryo with a beating heart, basic nervous system and a yolk-sac.

These new technologies raise several ethical and legal concerns.

Artificial wombs In the latest study, scientists started with collections of stem cells. The conditions created by the external uterus triggered the developmental process that makes a fetus. Although the scientists said we are a long way off synthetic human embryos, the experiment brings us closer to a future where some humans gestate their babies artificially.

Each year over 300,000 women worldwide die in childbirth or as a result of pregnancy complications, many because they lack basic care. Even in wealthy countries, pregnancy and childbirth is risky and healthcare providers are criticised for failing mothers.

There is an urgent need to make healthcare more accessible across the planet, provide better mental health support for mothers and make pregnancy and childbirth safer. In an ideal world every parent should expect excellent care in all aspects of motherhood. This technology could help treat premature babies and give at least some women a different option: a choice of whether to carry their child or use an external uterus.

Some philosophers say there is a moral imperative to develop artificial wombs to help remedy the unfairness of parenting roles. But other researchers say artificial wombs would threaten a women’s legal right to terminate a pregnancy.

Synthetic embryos and organs In the last few years, scientists have learned more about how to coax stem cells to develop into increasingly sophisticated structures, including ones that mimic the structure and function of human organs (organoids). Artificial human kidneys, brains, hearts and more have all been created in a lab, though they are still too rudimentary for medical use.

Advertisement

The issue of whether there are moral differences between using stem cells to produce models of human organs for research and using stem cells to create a synthetic embryo are already playing out in law courts.

One of the key differences between organoids and synthetic embryos is their potential. If a synthetic embryo can develop into a living creature, it should have more protection than those which don’t.

Synthetic embryos do not currently have potential to actually create a living mouse. If scientists did make human synthetic embryos, but without the potential to form a living being, they should arguably be treated similarly to organoids.

Some countries (for example Australia) have taken the position that synthetic embryos such as “blastoids” (which resemble five-to-six-day-old embryos) should be treated like natural embryos, because of similarities in structure. Other countries (such as the UK, the US, Japan) treat synthetic embryos as different from embryos because they can’t currently produce a live baby.

Another important legal issue is the source of stem cells and consent. The synthetic mouse embryo creators used stem cells from early embryos.

Advertisement

However, in the future it might be possible to make synthetic embryos from induced pluripotent stem cells (IPS). The worst case scenario would be a person donates a skin cell to research into producing organs to cure disease but this is used without their knowledge or consent to produce synthetic embryos.

Cloning IPS cells are created by taking a mature cell (such as a skin cell) from a living or dead person and applying treatments which drive it backwards to a more immature state. If the cell could be driven all the way back to an embryonic stem cell, it may one day be possible to use IPS cells to make viable embryos.

That embryo would be a clone of the cell donor. The public and scientists have huge concerns about human cloning.

But it has been possible to clone a human being using a different process called nuclear transfer, for 25 years. Nuclear transfer created Dolly the Sheep in 1997 and a monkey in 2018. In the late 90s and early 2000s, a flurry of laws introduced around the world successfully banned human cloning.

We should not let our fears about cloning stand in the way of crucial research. The benefits could make organ donor waiting lists a thing of the past, save premature babies and give women an option to have children a different way. Cloning, or any other unethical use of the technology, can be prevented by regulation.

Advertisement

What should you make of Realme’s three new offerings? We discuss them on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Source link

Continue Reading

Most Popular